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Abstract
We show that a suitable choice of the zero-order problem can lead directly to the
emergence of non-Taylor expansions in λ for the ground-state energies of the
Hamiltonian family H(λ) = −∇2 + r2 +λ/rβ in regions β � 3. The discussion
includes the role of dimension and the right order parameter. The effect of
choosing a more general potential of the form rα + λ/rβ is also considered.

PACS numbers: 03.65.Db, 31.15.Md

Conventional perturbation theory in quantum mechanics intends to solve an eigenvalue
problem H�n = En�n by taking a solvable Hamiltonian H0 and a perturbing potential λV,
where V defines the nature of the perturbation and λ its strength. The system is defined by the
total Hamiltonian H = H0 + λV, with known H0�n0 = En0�n0. It is then customary to express
an unknown eigenvalue En of H in Taylor series as

En = En0 + λEn1 + λ2En2 + · · · . (1)

A similar expansion for the eigenstate �n of H, in the form �n = �n0 + λ�n1 + λ2�n2 + · · ·,
yields subsequently expressions for the unknown correction terms of the series. Specifically,
one finds that

En1 = 〈�n0|V |�n0〉
〈�n0|�n0〉 . (2)

If, however, the potential V corresponds to a strong repulsive core near the origin, which
is common in certain areas of physical interest, it may so happen that the numerator in (2)
diverges, yielding En1 = ∞. This is then called a supersingular perturbation [3]. In this
case, the leading shift in energy �En = (En − En0) = λEn1 becomes useless, even when λ

→ 0. Hence, the only way to keep �En finite is to increase the coupling strength. This may
be achieved by choosing some µ as the order parameter that satisfies µ � λ as λ → 0. If
the first-order correction to energy is now denoted by Ēn1, it could be finite; consequently,
the net first-order shift µĒn1 would be finite, at least for small µ. The idea, however, leads
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to non-Taylor expansions, contrary to (1). Theoretical interest in such problems is therefore
obvious.

Perturbative and related studies on the radial states of the Hamiltonian (see, e.g., [1–14]
and references therein)

H = −∇2 + r2 + λ/rβ, (3)

in N-dimensions (ND) with

∇2 =
N∑

j=1

∂2
/
∂x2

j , r2 =
N∑

j=1

x2
j , (4)

reveal the aforesaid feature very clearly. In the total potential r2 + λ/rβ, the second part
dominates the behaviour near the origin. The singularity at r = 0 gets stronger as β increases
and, for large enough β, it is the r → 0 behaviour that becomes decisive. For example, the
conventional expansion (1) for the ground state breaks down for β � N. Instead, a new series
gets ordered in fractional powers of λ for β > N. For N = 3, this was explicitly shown in [4].
Later, it was also shown via a scaling argument [13] that this new series involves µ as the
order parameter, where µ = λZ, Z = (N − 2)/(β − 2). Thus, for H in (3), one can write

E0 = E00 + µĒ01 + · · · = N + λZĒ01 + · · · (5)

instead of (1). However, it is not easy to show the emergence of (5). Harrell [4] pursued a
rather involved scheme to obtain (5) along with Ē01 for several β-values (or ranges) in the 3D
case. Following his route, it is neither straightforward to generalize the results for arbitrary N
nor easy to infer in what ways (5) would change if, for example, we wished to concentrate on
a more general H of the form

H = −∇2 + rα +
λ

rβ
, (6)

in which considerable interest for α = 4 has already been shown [12].
In view of the above remarks, our purpose is to explore a straightforward route to arrive

at series like (5), more specifically the nature of the leading shift �E0, for H in (6) at α = 2
and else. To this end, we employ a better H0 and �00, following the ‘back-to-front’ method of
Killingbeck [15].

Consider H in (6). It is easy to check that �0 would go as exp[−rP], with P = 1 − (β/2),
for β > 2 as r → 0. At the other extreme of r → ∞, �0 would decay as exp[−rQ], with Q =
1 + (α/2). Therefore, we choose our starting normalizable function �00 as

�00 = exp[−R(r)/2], (7)

with R(r) = Ara + Br−b. If we now define our H0 as

H0 = −∇2 + V0 (8)

and insist that �00 be its lowest eigenfunction with zero eigenvalue, then V0 becomes

V0 =
(

aA

2

)2

r2a−2 +

(
bB

2

)2

r−(2b+2) − abAB

2
ra−b−2

− aA(a + N − 2)

2
ra−2 − bB(b − N + 2)

2
r−(b+2). (9)

For convenience, we now distinguish a few cases and study them separately.

Case I. Let us first take α = 2, i.e., the case of H in (3), and set

A = 1, a = 2, B = 4
√

λ

β − 2
, b = β

2
− 1. (10)
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This means that

R(r) = r2 +
4
√

λ

β − 2
r1− β

2 , (11)

and

V0 = r2 + λr−β − N − 2
√

λr1− β

2 −
√

λ

(
1 − N +

β

2

)
r−(1+ β

2 ). (12)

Therefore, writing H in (3) as

H = h0 + h1, (13)

with h0 = H0 + N that has a ground-state energy N and wavefunction given by (7) and (11),
one can choose

h1 = 2
√

λr1− β

2 +
√

λ

(
1 − N +

β

2

)
r−(1+ β

2 ). (14)

The key observation now is that the leading correction to the ground-state energy induced by
h1 can be calculated using first-order perturbation theory without any difficulty. The structure
of �00 ensures that there will be no divergence of the correction integral at the origin. We thus
get

E0 = N +

∫ ∞
0 h1 e−R(r) dNr∫ ∞

0 e−R(r) dNr
. (15)

The following results are now worth mentioning:

(i) In the range 2 < β < N, R(r) in the exponent in the numerator of (15) can be expanded to
note that there cannot be any correction of order less than λ.

(ii) At β = (2N − 2), the second part of h1 in (14) vanishes and hence (15) yields neatly

E0 = N + λ
1
2 (2/�(N/2)) (16)

at the lowest order, thus identifying Ē01 = 2/�(N/2) in (5).
(iii) For β > (2N − 2), the integral appearing in the numerator in (15) has a very clear

maximum close to the origin at

r0 ≈ λ
1

β−2

(
4

β + 4 − 2N

) 2
β−2

(17)

when λ 	 1. Also, under such a condition, the second part of h1 virtually controls the
value of the total integral. The denominator contributes a constant value of �(N/2)/2.
Therefore, one finds that the leading correction from the actual integral part in (15) is
of order λS, S = (2N − 2 − β)/(2β − 4). The pre-factor λ1/2 in (14) finally yields the
same Z as considered in (5).

(iv) While all the results obtained above and the conclusions reached so far agree with Harrell’s
work [4] for N = 3, the area 3 � β < 4 is yet to be covered. So, we now turn specific
attention to this region of β at N = 3. The integral in (15) then shows a deep minimum
very close to the origin at the same point r0 given by (17). From (15), the dominant
contribution emerges as

E0 = 3 +
4λ(4 − β)

�(3/2)(β − 2)

∫ ∞

L

r2−β exp[−r2] dr, (18)

where L stands for the lower limit of integration. Putting L = r0, one finds from (18) that
�E0 ∼ λZ again, with Z = 1/(β − 2), at the leading order for β > 3. However, (18)
also shows that the dependence will be of the form �E0 ∼ ln λ at β = 3, agreeing with
the actual finding [4]. For N �= 3, similar considerations apply, only the expression for
r0 in (17) may differ.
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Table 1. Adequacy of (15) in furnishing the ground-state energies for small λ at N = 3. The lower
entries denote energies obtained by summing up the perturbation series [4] up to first order.

β λ = 10−6 λ = 10−8

3.1 3.000 069 3.000 001 3
3.000 073 3.000 001 1

3.5 3.000 413 3.000 0196
3.000 390 3.000 018 1

4.1 3.002 962 3.000 330 7
3.002 958 3.000 330 1

4.5 3.007 5 3.001 19
3.007 2 3.001 15

5.0 3.018 3.003 9
3.016 3.003 5

(v) We may also provide some numerical estimates to check the workability of (15). Table 1
presents our result at N = 3 vis à vis the energies obtained from the work of [4] up to
first order. For λ 	 1, they must agree. A glance at the table reveals the correspondence.
Indeed, one needs to reduce λ considerably to achieve a very good conformity. One index
of ‘smallness’ of λ is provided by the virtual λ-independence of the denominator in (15).
At larger β, however, the pre-factor at the second term in (14) grows linearly and hence
the agreement becomes poorer.

Case II. For H in (6) at arbitrary α, we take

A = 4

α + 2
, a = α

2
+ 1, B = 4

√
λ

β − 2
, b = β

2
− 1. (19)

Thus, (11) is changed to

R(r) = 4

α + 2
r1+ α

2 +
4
√

λ

β − 2
r1− β

2 , (20)

and (12) to

V0 = rα + λr−β −
(
N − 1 +

α

2

)
r

α
2 −1 − 2

√
λr

α−β

2 −
√

λ

(
1 − N +

β

2

)
r−(1+ β

2 ). (21)

Choosing now H = H0 + H1 with

H1 =
(
N − 1 +

α

2

)
r

α
2 −1 + 2

√
λr

α−β

2 +
√

λ

(
1 − N +

β

2

)
r−(1+ β

2 ), (22)

we write E0(λ) for the Hamiltonian (6) as

E0 = 0 +

∫ ∞
0 H1 e−R(r) dNr∫ ∞

0 e−R(r) dNr
. (23)

In relation to (14), an extra λ-independent term in (22) exists. But this term does not affect
the major λ-dependent contribution from (23) for λ 	 1. Therefore, we may proceed in
a manner similar to that followed earlier. Thus, a number of features emerge. The more
important ones are the following:

(i) The leading λ-dependent term is of order λ for any β within 2 < β < N.
(ii) At β = (2N − 2), the primary correction term is of order √

λ. More explicitly, this term
is given by

µĒ01 = 2

� (2N/(α + 2))

√
λ

(
α + 2

4

) α−β

α+2

. (24)
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(iii) For β > (2N − 2), a maximum in the numerator of the second part of (23) occurs
at r0, where we again find r0 ∼ λ1/(β−2), and therefore the overall correction goes as
λ(N−2)/(β−2). The intermediate range may also be analysed (see the discussion around
(18)) to arrive at the same characteristic dependence.

Note that all the conclusions reached above are common to both situations, i.e. they
are independent of α, except for the numerical values of the coefficients. Thus, we have
generalized the earlier scaling result that is known to be valid only for α = 2.

Case III. Turning attention to the specific case of α = 4 in (6) in 3D [12], let us try to find
good estimates of E0. The problem now becomes highly nontrivial. Looking at (22), we
note that the λ-independent term here (4r) would make a fairly large contribution from all
orders. So, (23) is not expected to perform nicely. Therefore, we choose to proceed through
an approximate route, bypassing the direct one. To this end, we rewrite H in (6) as

H = h0 +
√

λh1 (25)

and define

h0 = H0 + 4r, h1 = 2r2−β/2 +

(
β

2
− 2

)
r−(1+β/2). (26)

We then assume that

E0 ≈ ε +
√

λ

∫ ∞
0 h1 e−R(r) d3r∫ ∞

0 e−R(r) d3r
, R(r) = 2

3
r3 +

4
√

λ

β − 2
r1− β

2 , (27)

where ε signifies the minimum energy of h0 when λ = 0. In other words, ε is the ground-state
energy of −∇2 + r4. Denoting the lowest energy of the Hamiltonian H = −d2/dx2 + x4 by ε0,
one can show that

ε =
(

5

3

)1/3

3ε0. (28)

Taking ε0 = 1.060 362 09, one gets ε from (28) as 3.771 594 817. Putting this value in (27),
estimates of E0 for given β and λ are obtained. Here are the two sample results for which
near-exact values, shown in parentheses, are available [12]. For λ = 10−4, we get E0 =
3.79 (3.84) at β = 4 and E0 = 3.95 (4.09) at β = 6. The success is notable in view of the
approximate nature and simplicity of our scheme, remembering further that λ = 10−4 is not
quite a weak perturbation.

Three more remarks are now in order. First, H0 in case II or I does contain a supersingular
potential part that is mixed with less singular ones. But E0 in either case is zero. This means that
it is not mandatory that we would get non-Taylor expansions for energy whenever supersingular
potentials are present. However, �00 reveals the odd √

λ-type series on expansion. Secondly,
our analysis based on the behaviour in the small-r and large-r region hints clearly that the
exact wavefunction for any state of the general Hamiltonian in (6) would be of the form

�n ∼ exp
[− 1

2 (Ara + Br−b)
]
	n, (29)

where 	n stands for a function that takes due care of the intermediate-r behaviour and also
of the nodes, if any. In effect, 	n corrects the H1 part. So, it will also be a function of λ.
However, it is unlikely to be as complicated a function of λ as En is. This is because the
peculiar λ-dependence of En originates from the lower limit of the integrals involved in the
average potential energy. The B factor in (29) provides this, as we have seen. Thus, while
it is traditionally believed that one loses finer features after an averaging, here in studies on
supersingular perturbations we may observe the opposite. Finally, the √

λ-dependence of B
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in (29) clarifies the vestigial effect [3]. In the limit λ → 0, H(λ) assumes a λ-independent
form, but �n(λ) does not. The latter requires a stronger condition, namely √

λ → 0, to achieve
a similar end. This inequivalence is possibly the root behind the observed non-Taylor series
in such contexts.

In summary, we have presented here a simple, straightforward way to show how the
primary energy correction may sometimes depend nonlinearly on λ, leading to non-Taylor
expansions. Our analysis yields the precise nature of λ-dependence as well. We have also
generalized the earlier scaling result to include H(λ) in (6) and noted some sort of universality.
Further work along similar lines may be rewarding.
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